2,542 research outputs found

    \u3cem\u3eIgnis Fatuus\u3c/em\u3e

    Get PDF

    The Lost Prose Poems of Larry Levis

    Get PDF

    Sensitivity and stability: A signal propagation sweet spot in a sheet of recurrent centre crossing neurons

    No full text
    In this paper we demonstrate that signal propagation across a laminar sheet of recurrent neurons is maximised when two conditions are met. First, neurons must be in the so-called centre crossing configuration. Second, the network’s topology and weights must be such that the network comprises strongly coupled nodes, yet lies within the weakly coupled regime. We develop tools from linear stability analysis with which to describe this regime, and use them to examine the apparent tension between the sensitivity and instability of centre crossing networks

    Neural complexity: a graph theoretic interpretation

    No full text
    One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end Tononi et al. [Proc. Nat. Acad. Sci. USA 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system's dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns et al. [Cereb. Cortex 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia et al. [Phys. Rev. E 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular we explicitly establish a dependency of neural complexity on cyclic graph motifs

    Serenade in Blue

    Full text link

    Learning action-oriented models through active inference

    Get PDF
    Converging theories suggest that organisms learn and exploit probabilistic models of their environment. However, it remains unclear how such models can be learned in practice. The open-ended complexity of natural environments means that it is generally infeasible for organisms to model their environment comprehensively. Alternatively, action-oriented models attempt to encode a parsimonious representation of adaptive agent-environment interactions. One approach to learning action-oriented models is to learn online in the presence of goal-directed behaviours. This constrains an agent to behaviourally relevant trajectories, reducing the diversity of the data a model need account for. Unfortunately, this approach can cause models to prematurely converge to sub-optimal solutions, through a process we refer to as a bad-bootstrap. Here, we exploit the normative framework of active inference to show that efficient action-oriented models can be learned by balancing goal-oriented and epistemic (information-seeking) behaviours in a principled manner. We illustrate our approach using a simple agent-based model of bacterial chemotaxis. We first demonstrate that learning via goal-directed behaviour indeed constrains models to behaviorally relevant aspects of the environment, but that this approach is prone to sub-optimal convergence. We then demonstrate that epistemic behaviours facilitate the construction of accurate and comprehensive models, but that these models are not tailored to any specific behavioural niche and are therefore less efficient in their use of data. Finally, we show that active inference agents learn models that are parsimonious, tailored to action, and which avoid bad bootstraps and sub-optimal convergence. Critically, our results indicate that models learned through active inference can support adaptive behaviour in spite of, and indeed because of, their departure from veridical representations of the environment. Our approach provides a principled method for learning adaptive models from limited interactions with an environment, highlighting a route to sample efficient learning algorithms
    • …
    corecore